
High-Reliability and High-Performance Compact Machining Center

FANUC ROBODRILL Q - DIBADV Series Advanced version

High-Reliability and High-Performance Compact Machining Center FANUC ROBODRILL © -DIBADV Series

High Performance of Machining

Achieving high productivity by high speed, high precision and high power Achieving high yield of workpiece by stable machining Utilization in various areas by wide range of application

Minimizing Down Time

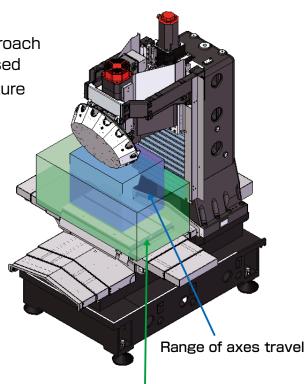
Achieving long operation life by high reliability Prevention of trouble by preventive maintenance function Minimizing down time by high maintainability

Ease of Use

Easy utilization of high function by excellent user-Interface Easy operation of peripheral equipment by high expandability Realizing simple integration with FANUC Robot by automation support function

*1 Photo when **DDR** \dot{i} mounted

*2 Photo when 2 front doors option mounted


Features of Advanced version

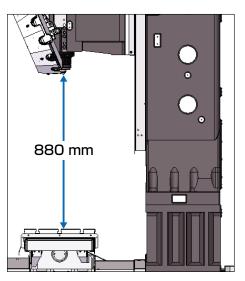
Expanding application range

- Expanding machining area
- Z-axis stroke expansion to 400mm improves approach to the machining point when indexing fixture is used
- · Less interference of Z-axis cover for the large fixture

Reduction of interference between table area and column

Max. fixture size

Item	X=D14SIBadv X=D21SIBadv	&=D14M 1 Badv &=D21M 1 Badv	&=D14L 1 Badv &=D21L 1 Badv
X-axis travel	300 mm	500 mm	700 mm
Y-axis travel	300 mm + 100 mm	400 mm	400 mm
Z-axis travel	400 mm		
Max. fixture size(X)*	640 mm	1050 mm	1400 mm
Max. fixture size(Y)*	520 mm	620 mm	620 mm


* Maximum size without interference in full stroke of the axis. Piping and cables of the fixture are included.

When the fixture is equipped on the table, following points must be kept.

 \cdot The fixture load must be put uniformly on the entire table surface

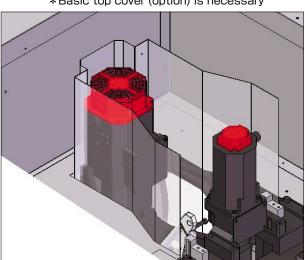
 \cdot Heavy unit must be kept inside of table area

- Table load capacity 400kg *
- \cdot Max. table load capacity is enhanced
- Applicable to large fixture and workpiece with the expansion of machining area
 * Max 200kg for α-D14SiB_{ADV}/D21SiB_{ADV}
- High column (option) *
- \cdot Column raising depends on fixture is applicable
- Available up to 400mm for wide range of application
 - * Max 200mm for α -D14SiBadv/D21SiBadv

High column 400mm spec.

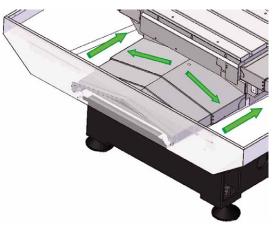
Excellent chip countermeasure

- Y-axis front mountain-shaped telescopic cover *
- · Smooth coolant flow improves chip evacuation
- Enhanced covering against chips and coolant * Except for α -D14S*i*B_{ADV}/D21S*i*B_{ADV}
- X-axis telescopic cover with 3 pieces *
 - · 3 pieces cover is applied as standard
- Reduction of the impact by 3 pieces structure enhances durability of cover and cushion rubber * Except for α -D14S*i*B_{ADV}/D21S*i*B_{ADV}
- Z-axis metal cover
- · High durability metal cover is applied as standard
- Exclusive design for advanced version achieved less interference

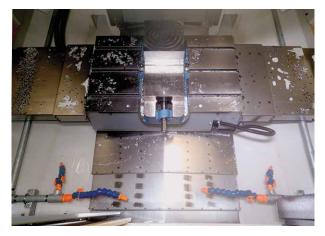

Chip evacuation comparison (700cc block machining) *1

Diesk	Amount of re	naining chips	
Block material	Standard version *2 (@=D21MiB)	Advanced version ^{*3} (&-D21M i Bady)	
Aluminum	140 g	10 g (-93%)	
Steel	1240 g	1 g (-99.9%)	

*1 Test result under FANUC's test condition *2 with normal flood coolant (option)


*3 with high power flood coolant with wall flush (option)

Enhanced cover around spindle motor (option)* Certain separation of spindle mechanism from machining area protects intrusion of chips and coolant and achieves high sustainability



*Basic top cover (option) is necessary

Enhanced cover around spindle motor

Y-axis front mountain-shaped telescopic cover

Remaining chips after machining test (Steel)

- Cleaning unit for tool taper shank (option)
 - Flushing the tool taper shank by coolant during tool change to prevent catching chips on the spindle taper
 - Stable machining accuracy can be maintained

Cleaning tool taper shank

Features of Advanced version

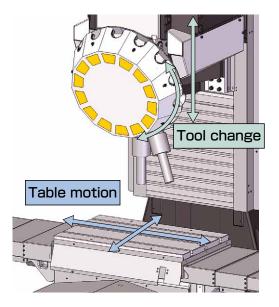
Cycle time reduction

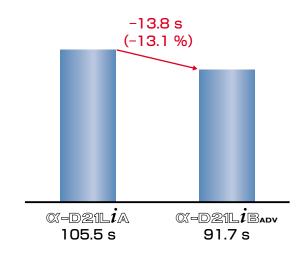
- Servo turret
- Tool change time reduction and reliability enhancement by applying new indexing unit driven by servo motor
- Fastest tool change time 0.7s (Tool to Tool) Shorter than ROBODRILL $D\dot{i}A$ series by 0.2s
- Max. tool weight 4kg setting enables larger cutting tool application

Tool change time (Tool to Tool / Cut to Cut)					
2 kg setting 3 kg setting 4 kg setting					
0.7s / 1.3s 0.9s / 1.5s 1.1s / 1.7s					

- Overlap of the ATC and table motion
 - Achieving cycle time reduction by overlapping tool change motion and table positioning
 - Tool change time comparison (Tool change + Table positioning) *

	2 kg setting	3 kg setting	4 kg setting
without overlap	1.3s	1.5s	1.8s
with overlap	0.7s	0.9s	1.1s


* Test result with table motion 500mm Tool change time is tool to tool


 Application example of cycle time reduction
 Enhancing the speed performance of ROBODRILL by the combination of servo turret, overlapping functions and DDR¹

Example of indexing application by **DDR-T**i

FANUC ROBODRILL DDRiB

- High-speed and high-precision additional 1-axis rotary table
 DDR*i* (option)
- Synchronous built-in servo motor and αiCZ sensor provide non-backlash, high-speed and high-precision machining
- Rigidity enhancement by optimizing the shape of casting body
- Achieving quicker action and higher clamp torque by new clamp mechanism

Items	Specifications
Drive system	Direct drive
Maximum torque	275 N • m
Maximum speed	200 min ⁻¹ (300 min ⁻¹ *)
Feedrate	1°/min to 30000°/min
Least input increment	0.001° (IS-C : 0.0001°)
Index accuracy	±0.0028° (±10″)
Clamp system	Pneumatic cylinder and spring
Clamp torque	700 N • m (at 0.5 MPa)
Max. loading capacity	100 kg
Allowable moment load	Projecting distance x Load = 600 N • m
Center height	150 mm
Mass of unit	80 kg

 * When loading capacity less than 25kg and loading inertia less than 0.25 kg \cdot m^{2}

- Making the best use of ROBODRILL's working space
- Enhancing rigidity and loading capacity by optimizing the shape of casting body
- Achieving higher clamp torque by new clamp mechanism of support spindle

Items	Specifications			
Tterns	ddr-tsib	DDR-TM <i>i</i> B	DDR-TL <i>i</i> B	
Max. loading capacity	45 kg	200 kg		
Center height	200 mm	260 mm		
Max. turning diameter	Ø310 mm Ø410 mm			
Clamp torque	1100 N · m (at 0.5 MPa)			

High Performance of Machining

Wide variety of high speed and high power spindle

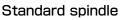
High speed and high power spindle

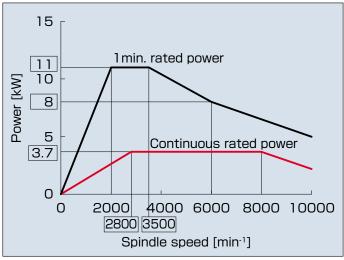
- High rigidity mechanism and outstanding rigidity of main spindle
 enabling excellent ability in milling in addition to drilling and tapping
- Optimum spindle selectable according to application
 - Standard spindle
- : Applicable to wide range machining use
- High torque spindle
 : Applicable to heavy machining of steel parts
- High acceleration spindle: Applicable to high speed and high efficiency

machining of aluminum parts

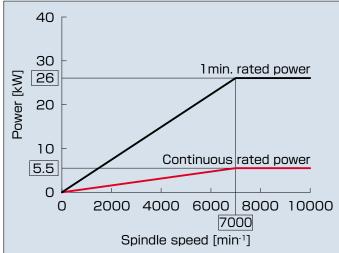
		Tool topor or	200
 High speed spir 	ndle : Ap	oplicable to smooth surface	machining

		Tool taper spec.				
Spindle spec.	Max. speed	ВТ (втзо)	BIG-PLUS (BBT30)	DIN (DIN69871-A30)	NC5 (NC5-46)	
Standard						
High torque	10000 min ⁻¹	\checkmark	\checkmark	 ✓ 	\checkmark	
High acceleration						
High speed	24000 min ⁻¹	\checkmark	\checkmark	\checkmark		

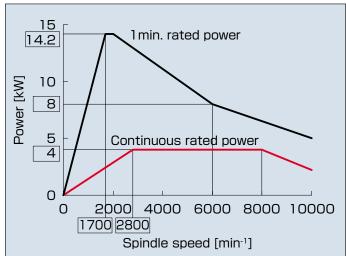

*Center through coolant option is available for all spindle spec. Withstand pressure: 7MPa (NC5: 5MPa)

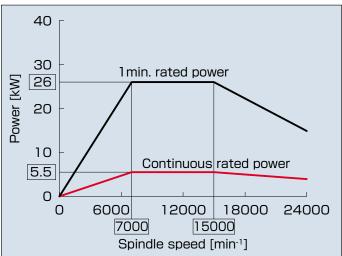


High power spindle motor

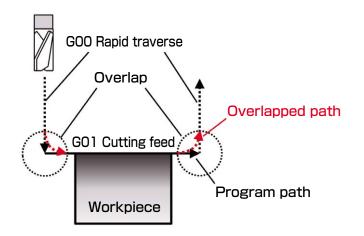


Center through spindle




High acceleration spindle

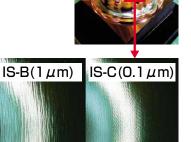
High torque spindle



High speed spindle

High speed machining

- Smart overlap function
 - Achieving cycle time reduction by overlapping on the transition between rapid traverse and cutting feed
 - Easy setting by selecting ON/OFF on the screen



High precision and fine surface machining

- Latest CNC and Servo functions
 - SERVO HRV⁺ control Achieving high responsiveness by optimized electrical control
 - Latest AC Servo Motor Applying the latest AC Servo Motor which provides more smoother feed
 - Least input increment 0.1 μ m (IS-C) Addition of setting for least unit 0.1 μ m for program command

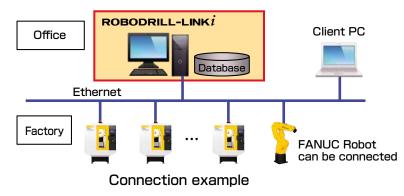
Achieving higher surface quality and improvement of circularity and so on, by applying each function

SERVO HRV⁺ control

Least input increment (Machining example by program command 0.1 μ m)

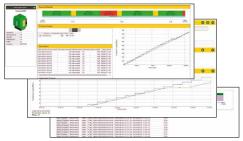
Stable machining

- Al thermal displacement compensation function
 - Real time compensation by estimating the thermal displacement along each axis based on the operation status of the spindle and feed axes
 - By using touch probe (option), compensation effect adjustment can be performed automatically from the measurement result
 - By using temperature sensors (option), more accurate compensation can be achieved.
 - Even if some of sensors got trouble, sensor check function will keep proper compensation.

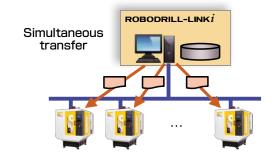

AI thermal displacement compensation

Minimizing Down Time

Complete operation management

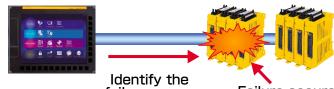

ROBODRILL-LINKi (PC software)

- Operation condition monitoring system
 - Real time display of the entire production area helps to understand the condition of each machine at once
- Supporting improvement of machine utilization by collecting and visualizing each machine's information
- Automatic collection of achievement and history
- Operation achievement data for each machine are collected and displayed in the graph
- Easy introduction
- \cdot The system can be built with general PC and no server PC is required
- Useful tools for management of ROBODRILLs
- Collecting ROBODRILL's additional information such as periodical maintenance data, tool life, etc.
- NC program can be transferred to multiple ROBODRILLs simultaneously



Condition overlook screen

Individual machine operation achievement


Simultaneous file transfer function

High maintainability

- Information center
- Alarm messages and their detailed information are displayed
- Cause of alarm can be identified from the detailed information
- Improvement of maintainability for I/O device
 - Cause and point of the failure of I/O devices
 (disconnection, earth fault etc.) are identified
 - The facility availability ratio is improved due to the reduction of down time

Information center

failure cause and point

High reliability

- Abundant track records at FANUC in-house factory
- \cdot Using ROBODRILLs for both steel and aluminum parts machining at FANUC in-house factory
- Applying maintenance data of FANUC in-house factory
 Accumulating maintenance data of ROBODRILL obtained at FANUC in-house factory
- Achieving high reliability by returning the maintenance data to ROBODRILL design

Complete preventive maintenance

- Maintenance information management
- Monitoring the condition of maintenance items and announcing the abnormality or maintenance timing to support effective periodical maintenance
- Possible to set customized maintenance items (Max. to 10)
- Leakage Detection Function
- Early detection of insulation resistance drop of each motor and motor power cable
- \cdot Enable preventive maintenance before breakdown
- Fan Monitor Function
 - Monitoring cooling fans of CNC, Servo Amplifiers, Spindle Amplifier and Power Supply
 - Announcing before failure when the rotation speed of the cooling fans is dropping
 - \cdot Easy to detect the abnormal fan

FANUC in-house factory

Maintenance Information Management

Leakage Detection Function

- Machine configuration to improve parts replacement
 - New fan motor units are applied for easy parts replacement
 - The facility availability ratio is improved due to the reduction of maintenance time
- RECHARGEABLE BATTERY UNIT (option)
 - Supplying backup power both CNC and PULSECODER instead of disposable battery
 - Automatically recharged while ROBODRILL power ON
 - \cdot Battery maintenance free

Ease of Use

The latest CNC of FANUC

- 10.4" Color LCD with iHMI
- \cdot Intuitive and operable interface by iHMI
- Easy operation on programming, setup and machining
- Seamless flat display unit achieves tolerance to coolant oil resistant and designability
- Operator's panel
- Improving operability and visibility by renewing key layout and indicators
- \cdot Unity design with CNC display unit

- Easy to use screens from programming to maintenance
 - CNC operation screen
 Operable screen structure arranged by operation steps of "programming", "setup" and "machining"
 Graphical display enhances visibility
 - Machine operation setting screen Parameters related with work load, machining mode and energy saving can be switched easily according to applications

Restoration screen

Particular maintenance of ROBODRILL such as turret restoration or motor reference position recovery can be performed easily

- Integrated operation, programming guidance (MANUAL GUIDE i)
 - Easy to program and operate machining on one screen
 - Easy to program with G code through graphic guide
 - · Simple machining simulation of solid model

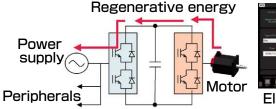
CNC operation

Machine operation setting

Machining cycle input

Automation application

- Quick and Simple Startup of Robotization (QSSR) (option)
- · Useful package of robot, robot base, auto side door, connecting cables, sample programs, easy setting function etc.
- Easy to introduce robot system
- Robot interface 2 (option)
- Reducing cables and keeping safety by FL-net function
- Robot manual operation is available on the **ROBODRILL** screen
- ROBODRILL manual operation is available on the Robot teach pendant


High expandability

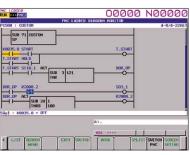
- External interface function
- General I/O signals such as external start are ready to use only by selecting settings
- Lighting conditions of signal lamps can be set on the screen
- Custom control panel
- · On screen switches (ON/OFF or pulse) and indication lamps can be created
- Peripheral devices are operated without integrating control panel hardware
- Flexible and cost saving solution for simple system integration
- Custom PMC function
- · LADDER program to control peripheral devices can be created and monitored on screen
- Number of I/O signals can be expanded Standard: Input 16 / Output 16 Max: Input 1024 / Output 1024 (option)

Technology for power saving

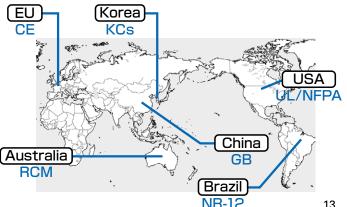
Proven power regeneration function

 The power regeneration function that use regenerating energy occurred on deceleration of motors has been adopted since 1994.

Electric power consumption monitor



Machine operation screen


External interface function

PMC ladder screen

Conformity of safety standards

Conformity of each country's safety standard (option)

Robot manual operation screen

Machining Capability

Spindle spec.	Standard spindle High torqu		ue spindle	High acceler High spea	ation spindle ed spindle	
Machining	Drilling Tool dia.(mm) x	Tapping Tap size x	Drilling Tool dia.(mm) x	Tapping Tap size x	Drilling Tool dia.(mm) x	Tapping Tap size x
					. ,	•
Material	Feed(mm/rev)	Tap pitch(mm)	Feed(mm/rev)	Tap pitch(mm)	Feed(mm/rev)	Tap pitch(mm)
Carbon Steel C45	ф30 x 0.10	M20 x 2.5	ф30 x 0.15	M20 x 2.5	φ20 x 0.10	M16 x 2.0
Grey Cast Iron	ф30 x 0.25	M27 x 3.0	φ30 x 0.30	M27 x 3.0		
Aluminum Alloy Die Casting	ф32 x 0.35	M30 x 3.5	φ32 x 0.40	M30 x 3.5	φ22 x 0.25	M24 x 3.0

Machining sample (These data may change by machining conditions)

Available Options

Top cover

Coolant unit (tank)

LED Illumination

Tool length switch for automatic measurement

Coolant unit with chip flush (spot gun provided)

Automatic Grease Lubricating System (LHL Liquid Grease)

Automatic Oil Lubricating System

Touch probe

(Note)

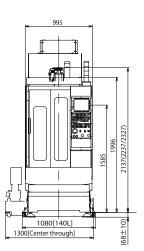
• The machine life may be shortened depending on the workpiece, tool, coolant, or lubricant to be used.

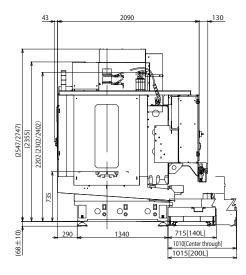
Maintenance and Customer Support

Worldwide Customer Support and Service

FANUC operates customer service and support system anywhere in the world through subsidiaries, affiliates and distributor partners. FANUC provides the highest quality service with the quickest response at the location nearest you.

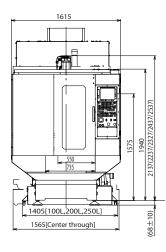
FANUC ACADEMY

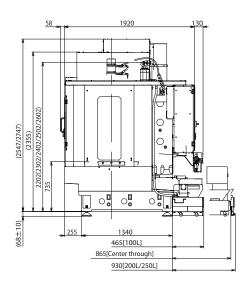

FANUC ACADEMY operates training programs on FANUC ROBODRILL which focus on practical operations and programming with machining know how and maintenance.

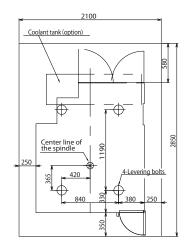


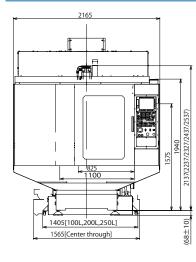

Inquiries : Oshino-mura, Yamanashi, Japan 401-0597 Phone : 81-555-84-6030 Fax : 81-555-84-5540

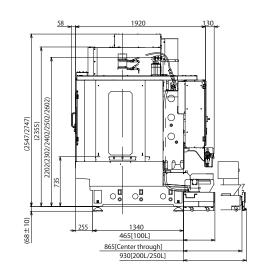
Outer Dimensions and Floor Plan

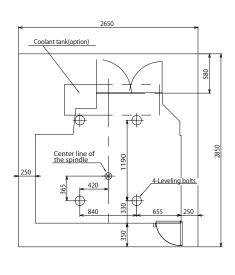

$\alpha = D21SiB_{ADV}/D14SiB_{ADV}$ *1






CX-D21MIBADV/D14MIBADV *1





Qr-D21L1BADV/D14L1BADV *1

*1 These dimensions may vary on some options. (For further details, please contact FANUC.)

Specification

Item		01-D21SIBadv 01-D14SIBadv	X-D21MIBadv X-D14MIBadv	07-D21L 1 Badv 07-D14L 1 Badv		
Machine (Standard)						
	X-axis-travel (longitudinal movement of table)	t of table) 300 mm 500 mm 700 mm		700 mm		
	Y-axis travel (cross movement of saddle)	300 mm + 100 mm	400 mm			
Capacity	Z-axis travel (vertical movement of spindle head)	400 mm				
	Distance from table surface to spindle gage plane	80 mm to 480 mm (whe	en no high column is spec	ified)		
	Working space (X-axis×Y-axis)	630 mm×330 mm	650 mm×400 mm	850 mm×410 mm		
Table	Capacity of workpiece mass	200 kg (uniform load)	400 kg (uniform load)			
	Working surface configuration	3×T-slots size 14 mm p	hitch 125 mm			
	Speed range		n ⁻¹ / 240 min ⁻¹ to 24000 r	nin-1 (option)		
Spindle	Spindle gage (call number)	7/24 taper No.30 (with	air blow)			
	Rapid traverse rate	48 m/min (X,Y,Z)				
Feedrate	Feedrate	1 mm/min to 30000 mr	n/min			
	Tool change system	Turret type				
	Type of tooling	JIS B 6339-2011 BT30), MAS 403-1982 P30T-	1 (45°)		
		21 tools : α -D21S i Bady/	$D21MiB_{ADV}/D21LiB_{ADV}$			
	Tool storage capacity	14 tools : α -D14S i Badv/				
	Maximum tool diameter	80 mm				
		200 mm : α-D14S <i>i</i> B _{ADV}	250 mm			
Turret	Maximum tool length	190 mm (changed by				
		specifications) : α -D21S i B _{ADV}				
	Method of tool selection	Random shortest path				
		2 kg/tool (total mass 23 kg) / 3 kg/tool (total mass 33 kg) / 4 kg/tool (total mass 46 kg) : 21 tools				
	Maximum tool mass	2 kg/tool (total mass 15 kg) / 3 kg/tool (total mass 22 kg) / 4 kg/tool (total mass 30 kg) : 14 tools				
	Tool changing time (Tool to Tool)	0.7 s (2 kg/tool) / 0.9 s	(3 kg/tool) / 1.1 s (4 kg/	(tool)		
	(Cut to Cut)	1.3 s (2 kg/tool) / 1.5 s (3 kg/tool) / 1.7 s (4 kg/tool)				
Motors	Spindle drive motor	11.0 kW (1minute rating)	/3.7 kW(continuous rating)	(changed by specifications)		
A = =	Bidirectional accuracy of positioning of an axis (ISO230-2:1988)	0.006 mm~0.020 mm				
Accuracy *1	Bidirectional repeatability of positioning of an axis (ISO230-2:1997, 2006)	Less than 0.004 mm				
Sound pressur	re level	Less than 70 dB *2				
Model		FANUC Series 31 <i>1</i> -B				
Control unit	Simultaneously controlled axes	Max.4 axes				
Installations	(note)Please make sure to comply with	installation conditions sp	ecified by FANUC when ir	stalling ROBODRILL *3		
Dewerser	Power supply	supply 200 Va.c. to 220 Va.c., -15 % to +10 %, 3-phase, 50 Hz±1 Hz or 60 Hz±1 Hz 10 k		Hz or 60 Hz ± 1 Hz 10 kVA $^{*}4$		
Power source Compressed air supply 0.35 MPa to 0.55 MPa (0.5 MPa is recommend) (gage pressure), 0.15		m³/min (at atmospheric pressure) *5				
	Machine height	2236 mm ±10 mm (wh	en no high column is spec	cified)		
Machine size	Floor space	995 mm×2220 mm 1615 mm×2050 mm 2165 mm×2050 mm				

*1 Positioning accuracy is the adjusted and measured value in compliance with applicable standard at FANUC's factory. Depending on an influence of JIG & workpiece mass on table, the use conditions and installation environment, there may be a case where the accuracy shown in this catalog can not be achieved.

*2 Sound pressure level is measured in compliance with FANUC's own regulation. Depending on the use conditions and installation environment, there may be a case where the sound pressure level shown in this catalog can not be achieved.

*3 Fastening the machine to the floor (mounting anchors) may be required depending on the use conditions and installation environment, or to prevent the machine from toppling over due to an earthquake.

*4 In case of center through coolant and cleaning unit for tool taper shank, additional + 1kVA is required respectively. In case of additional 1 axis, additional maximum + 1.5kVA is required. A cable with 10mm² or more should be used at primary power connection.

*5 In case of center through coolant, additional + 0.05m³/min is required. In case of air blow for chips, additional + 0.2m³/min is required. In case of side automatic door, 0.4MPa compressed air supply or more is required.

FANUC CORPORATION

Oshino-mura, Yamanashi 401-0597, Japan Phone: (+81)555-84-5555 https://www.fanuc.co.jp/

•All specifications are subject to change without notice.	
•No part of this catalog may be reproduced in any form.	
•The photo includes options.	
•The products in this catalog are controlled based on Japan's "Foreign Exchange and Foreign	
Trade Law". The export of these products from Japan is subject to an export License by the	
government of Japan.	
Further, re-export to another country may be subject to the license of the government of the	
country from where the product is re-exported.	
Furthermore, the product may also be controlled by re-export regulations of the United States	

government. •Should you wish to export or re-export these products, please contact FANUC for advice.

© FANUC CORPORATION, 2016 RDRILLA-D*i*BADV(E)-03b, 2021.10, Printed in Japan